Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 13(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38666840

RESUMEN

Hepatic encephalopathy (HE) is a neurological condition linked to liver failure. Acute HE (Type A) occurs with acute liver failure, while chronic HE (Type C) is tied to cirrhosis and portal hypertension. HE treatments lag due to gaps in understanding its development by gender and age. We studied how sex and age impact HE and its severity with combined liver toxins. Our findings indicate that drug-induced (thioacetamide, TAA) brain edema was more severe in aged males than in young males or young/aged female rats. However, adding alcohol (ethanol, EtOH) worsens TAA's brain edema in both young and aged females, with females experiencing a more severe effect than males. These patterns also apply to Type A HE induced by azoxymethane (AZO) in mice. Similarly, TAA-induced behavioral deficits in Type C HE were milder in young and aged females than in males. Conversely, EtOH and TAA in young/aged males led to severe brain edema and fatality without noticeable behavioral changes. TAA metabolism was slower in aged males than in young or middle-aged rats. When TAA-treated aged male rats received EtOH, there was a slow and sustained plasma level of thioacetamide sulfoxide (TASO). This suggests that with EtOH, TAA-induced HE is more severe in aged males. TAA metabolism was similar in young, middle-aged, and aged female rats. However, with EtOH, young and aged females experience more severe drug-induced HE as compared to middle-aged adult rats. These findings strongly suggest that gender and age play a role in the severity of HE development and that the presence of one or more liver toxins may aggravate the severity of the disease progression.

2.
Biofactors ; 47(2): 190-197, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33098588

RESUMEN

Neuroinflammation leads to neurodegeneration, cognitive defects, and neurodegenerative disorders. Neurotrauma/traumatic brain injury (TBI) can cause activation of glial cells, neurons, and neuroimmune cells in the brain to release neuroinflammatory mediators. Neurotrauma leads to immediate primary brain damage (direct damage), neuroinflammatory responses, neuroinflammation, and late secondary brain damage (indirect) through neuroinflammatory mechanism. Secondary brain damage leads to chronic inflammation and the onset and progression of neurodegenerative diseases. Currently, there are no effective and specific therapeutic options to treat these brain damages or neurodegenerative diseases. Flavone luteolin is an important natural polyphenol present in several plants that show anti-inflammatory, antioxidant, anticancer, cytoprotective, and macrophage polarization effects. In this short review article, we have reviewed the neuroprotective effects of luteolin in neurotrauma and neurodegenerative disorders and pathways involved in this mechanism. We have collected data for this study from publications in the PubMed using the keywords luteolin and mast cells, neuroinflammation, neurodegenerative diseases, and TBI. Recent reports suggest that luteolin suppresses systemic and neuroinflammatory responses in Coronavirus disease 2019 (COVID-19). Studies have shown that luteolin exhibits neuroprotective effects through various mechanisms, including suppressing immune cell activation, such as mast cells, and inflammatory mediators released from these cells. In addition, luteolin can suppress neuroinflammatory response, activation of microglia and astrocytes, oxidative stress, neuroinflammation, and the severity of neuroinflammatory diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and TBI pathogenesis. In conclusion, luteolin can improve cognitive decline and enhance neuroprotection in neurodegenerative diseases, TBI, and stroke.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Tratamiento Farmacológico de COVID-19 , Inflamación/tratamiento farmacológico , Luteolina/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/virología , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/virología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/virología , COVID-19/complicaciones , COVID-19/virología , Flavonas/uso terapéutico , Humanos , Inflamación/complicaciones , Inflamación/virología , Neuronas/efectos de los fármacos , Neuronas/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...